博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
KD-tree详解
阅读量:5276 次
发布时间:2019-06-14

本文共 3753 字,大约阅读时间需要 12 分钟。

转载自:http://blog.csdn.net/zhjchengfeng5/article/details/7855241

首先来一个问题:

    给定平面上一个点集 E ,还有一个定点 V ,怎么在一群点中找出一个点 U,使得 V 与 U 的距离最近(欧几里得距离)?

当然,我们能够想到一种做法:枚举 E 中所有的点,找出它们中距离V 最近的点 U。

但是,假设现在有两个点集 E1 与 E2 ,对于 E2 中每一个点 Vi ,找出一个在E1 中的一个点 Ui,使得 Vi 到 Ui 的距离最短,这怎么做?还是枚举?

既然枚举的复杂度很高 ( O(n) 的复杂度 ),那有没有办法把复杂度降下来呢?答案是肯定的,引入一种数据结构:K-D tree

一、何为 K-D tree?

        二叉树(有左儿子,右儿子的那种树形结构)

二、能解决哪些问题?

        K-D tree 可以在 log(n) ( 最坏是 sqrt(n) )的时间复杂度内求出一个点集 E 中,距离一个定点 V 最近的点(最近邻查询),稍稍处理一下,我们还可以求出点集 E 中距离距离 V 最近的 k 个点(k邻近查询

三、怎么利用 K-D tree 解决上面的问题?

       将点集 E中的点按照某种规则建成一棵二叉树,查询的时候就在这颗建好的二叉树上面用 log(n) (最坏是 sqrt(n))的时间复杂度查询出距离最近的点

四、既然是二叉树,怎么建树?

       这是最关键的地方,因为不管是 划分树 , 线段树 , 字典树 ,甚至是其他的数据结构或者算法(例如 KMP 之类的) ,之所以能够高效的处理问题,主要就是预处理的好。 K-D tree 之所以高效,就是因为建树很高明,高明之处体现在 “将点集 E中的点按照某种规则建成一棵二叉树” 的这种规则

       在讲这种规则之前,我们先来看看 K-D tree 这种数据结构为什么叫做 K-D tree 

               K:K邻近查询中的k

               D:空间是D维空间(Demension)

                tree:你可以理解为是二叉树,也可以单纯的看做是一颗 tree

        好了, K 我们已经用到了,tree 我们也已经用到了,但是 D 呢?貌似这篇文章到现在为止还没有提到过 D 吧?

       这种规则,就是针对空间的“”的

       既然要建树,那么树上的节点肯定要定义一些状态:

       节点的状态:

                分裂点(split_point)

                分裂方式(split_method)

                左儿子(left_son)

                右儿子(right_son)

        我们建树的规则就是节点的状态中的:分裂方式(split_method)

        想必读者已经看见上面的关键字了:分裂点 分裂方式,为什么反复的出现分裂这两个字呢?难道建一颗 K-D tree 还要分裂什么,分裂空间

        对,K-D tree的建立就是分裂空间的过程!

        怎么建树呢?

        建树依据:

                先计算当前区间 [ L , R ] 中(这里的区间是点的序号区间,而不是我们实际上的坐标区间),每个点的坐标的每一维度上的方差,取方差最大的那一维,设为 d,作为我们的分裂方式(split_method ),把区间中的点按照在 d 上的大小,从小到大排序,取中间的点 sorted_mid 作为当前节点记录的分裂点,然后,再以 [ L , sorted_mid-1 ] 为左子树建树 , 以 [sorted_mid+1 , R ] 为右子树建树,这样,当前节点的所有状态我们便确定下来了:

                split_point= sorted_mid

                split_method= d

                left_son    =  [ L , sorted_mid-1 ]

                right_son =  [ sorted_mid+1 , R ]

        为了便于理解,我先举个例子:

        假设现在我们有平面上的点集 E ,其中有 5 个二维平面上的点 : (1,4)(5,8) (4,2) (7,9) (10,11)

        它们在平面上的分布如图:

                                                                

        首先,我们对区间 [ 1 , 5 ] 建树:

        先计算区间中所有点在第一维(也就是 x 坐标)上的方差:

                平均值 : ave_1 =5.4

                方差 : varance_1 =9.04

        再计算区间中所有点在第二维(也就是 y 坐标)上的方差:

                平均值:ave_2 =6.8

                方差:varance_2 =10.96

        明显看见,varance_2 > varance_1 ,那么我们在本次建树中,分裂方式 :split_method =2 , 再将所有的点按照 第 2 维 的大小从小到大排序,得到了新的点的一个排列:

                (4,2) (1,4)5,8 (7,9) (10,11)

        取中间的点作为分裂点 sorted_mid =5,8作为根节点,再把区间 [ 1 , 2] 建成左子树 , [ 4 , 5] 建成右子树,此时,直线 : y = 8 将平面分裂成了两半,前面一半给左儿子,后面一半给了右儿子,如图:

                                                                

        建左子树 [1 , 3 ] 的时候可以发现,这时候是 第一维 的方差大 ,分裂方式就是1 ,把区间 [ 1, 2 ] 中的点按照 第一维 的大小,从小到大排序 ,取中间点1,4 根节点,再以区间 [ 2, 2] 建立右子树 得到节点 (4,2)

                                                                

         建右子树 [4 , 5 ] 的时候可以发现,这时还是 第一维 的方差大, 于是,我们便得到了这样的一颗二叉树 也就是 K-D tree,它把平面分成了如下的小平面,使得每个小平面中最多有一个点:

                                                                 

        可以看见,我们实际上在建树的过程中,把整个平面分成了 4 个部分

        树是建了,那么查询呢?

        查询过程:

                查询,其实相当于我们要将一个点“添加”到已经建好的 K-D tree 中,但并不是真的添加进去,只是找到他应该处于的子空间即可,所以查询就显得简单的毒攻了

                每次在一个区间中查询的时候,先看这个区间的分裂方式是什么,也就是说,先看这个区间是按照哪一维来分裂的,这样如果这个点对应的那一维上面的值比根节点的小,就在根节点的左子树上进行查询操作,如果是大的话,就在右子树上进查询操作

                每次回溯到了根节点(也就是说,对他的一个子树的查找已经完成了)的时候,判断一下,以该点为圆心,目前找到的最小距离为半径,看是否和分裂区间的那一维所构成的平面相交,要是相交的话,最近点可能还在另一个子树上,所以还要再查询另一个子树,同时,还要看能否用根节点到该点的距离来更新我们的最近距离。为什么是这样的,我们可以用一幅图来说明:

                                                                

         在查询到左儿子的时候,我们发现,现在最小的距离是 r = 10 ,当回溯到父亲节点的时候,我们发现,以目标点(10,1)为圆心,现在的最小距离 r = 10 为半径做圆,与分割平面 y = 8 相交,这时候,如果我们不在父亲节点的右儿子进行一次查找的话,就会漏掉 (10,9) 这个点,实际上,这个点才是距离目标点 (10,1) 最近的点

由于每次查询的时候可能会把左右两边的子树都查询完,所以,查询并不是简单的 log(n) 的,最坏的时候能够达到 sqrt(n)

        好了,到此,K-D tree 就差不多了,写法上与很多值得优化的地方,至于怎么把最邻近查询变换到 K 邻近查询,我们用一个数组记录一个点是否可以用来更新最近距离即可,下面贴上 K-D tree 一个模板

#include 
#include
#include
#include
#include
#include
#include
#include
#include
#define INT_INF 0x3fffffff#define LL_INF 0x3fffffffffffffff#define EPS 1e-12#define MOD 1000000007#define PI 3.141592653579798#define N 60000using namespace std;typedef long long LL;typedef unsigned long long ULL;typedef double DB;struct data{ LL pos[10]; int id;} T[N] , op , point;int split[N],now,n,demension;bool use[N];LL ans,id;DB var[10];bool cmp(data a,data b){ return a.pos[split[now]]
R) return; int mid=(L+R)>>1; //求出 每一维 上面的方差 for(int pos=0;pos
R) return; int mid=(L+R)>>1; //求出目标点 op 到现在的根节点的距离 LL dis=0; for(int i=0;i

转载于:https://www.cnblogs.com/AWCXV/p/7632254.html

你可能感兴趣的文章
不信任的 .exe 怎么办,用 Windows 沙盒啊!
查看>>
【郭林专刊】JSP中JSTL提供的函数标签EL表达式操作字符串的方法
查看>>
【郭林专刊】10个步骤让你成为高效的Web开发者
查看>>
jQuery选中该复选框来实现/全部取消/未选定/获得的选定值
查看>>
Linux网络编程——连接和面向连接的协议之间没有区别
查看>>
strcpy_s与strcpy对照
查看>>
hdu149850 years, 50 colors (多个最小顶点覆盖)
查看>>
Codeforces 484B Maximum Value(高效+二分)
查看>>
DisplayContent、StackBox、TaskStack笔记
查看>>
NetBeans工具学习之道:NetBeans的(默认)快捷键
查看>>
元组、字典、集合
查看>>
Android 通过代码改变控件的布局方式
查看>>
Android简易实战教程--第四十七话《使用OKhttp回调方式获取网络信息》
查看>>
Zabbix定义
查看>>
html页面展示Json样式
查看>>
Java 23 种设计模式
查看>>
1035. 插入与归并(25)
查看>>
MySql远程连接设置
查看>>
pandas常用
查看>>
爬虫工具——Selenium和PhantomJS
查看>>